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Exercises for 1.4

Exercise 1.4.1 Find the possible flows in each of the fol-
lowing networks of pipes.
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Exercise 1.4.2 A proposed network of irrigation canals
is described in the accompanying diagram. At peak de-
mand, the flows at interchanges A, B, C, and D are as
shown.
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a. Find the possible flows.

b. If canal BC is closed, what range of flow on AD

must be maintained so that no canal carries a flow
of more than 30?

Exercise 1.4.3 A traffic circle has five one-way streets,
and vehicles enter and leave as shown in the accompany-
ing diagram.
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a. Compute the possible flows.

b. Which road has the heaviest flow?

1.5 An Application to Electrical Networks7

In an electrical network it is often necessary to find the current in amperes (A) flowing in various parts of
the network. These networks usually contain resistors that retard the current. The resistors are indicated
by a symbol ( ), and the resistance is measured in ohms (Ω). Also, the current is increased at various
points by voltage sources (for example, a battery). The voltage of these sources is measured in volts (V),

7This section is independent of Section 1.4
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and they are represented by the symbol ( ). We assume these voltage sources have no resistance. The
flow of current is governed by the following principles.

Ohm’s Law

The current I and the voltage drop V across a resistance R are related by the equation V = RI.

Kirchhoff’s Laws

1. (Junction Rule) The current flow into a junction equals the current flow out of that junction.

2. (Circuit Rule) The algebraic sum of the voltage drops (due to resistances) around any closed
circuit of the network must equal the sum of the voltage increases around the circuit.

When applying rule 2, select a direction (clockwise or counterclockwise) around the closed circuit and
then consider all voltages and currents positive when in this direction and negative when in the opposite
direction. This is why the term algebraic sum is used in rule 2. Here is an example.

Example 1.5.1

Find the various currents in the circuit shown.

Solution.
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First apply the junction rule at junctions A, B, C, and D to obtain

Junction A I1 = I2 + I3

Junction B I6 = I1 + I5

Junction C I2 + I4 = I6

Junction D I3 + I5 = I4

Note that these equations are not independent
(in fact, the third is an easy consequence of the other three).
Next, the circuit rule insists that the sum of the voltage increases
(due to the sources) around a closed circuit must equal the sum of
the voltage drops (due to resistances). By Ohm’s law, the voltage

loss across a resistance R (in the direction of the current I) is RI. Going counterclockwise around
three closed circuits yields

Upper left 10+ 5= 20I1

Upper right −5+ 20= 10I3+5I4

Lower −10=−20I5−5I4

Hence, disregarding the redundant equation obtained at junction C, we have six equations in the
six unknowns I1, . . . , I6. The solution is
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I1 =
15
20 I4 =
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−1
20 I5 =

12
20

I3 =
16
20 I6 =

27
20

The fact that I2 is negative means, of course, that this current is in the opposite direction, with a
magnitude of 1

20 amperes.

Exercises for 1.5

In Exercises 1 to 4, find the currents in the circuits.

Exercise 1.5.1
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Exercise 1.5.3
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Exercise 1.5.4 All resistances are 10Ω.
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Exercise 1.5.5

Find the voltage x such that the current I1 = 0.
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1.6 An Application to Chemical Reactions

When a chemical reaction takes place a number of molecules combine to produce new molecules. Hence,
when hydrogen H2 and oxygen O2 molecules combine, the result is water H2O. We express this as

H2 +O2→ H2O

Individual atoms are neither created nor destroyed, so the number of hydrogen and oxygen atoms going
into the reaction must equal the number coming out (in the form of water). In this case the reaction is
said to be balanced. Note that each hydrogen molecule H2 consists of two atoms as does each oxygen
molecule O2, while a water molecule H2O consists of two hydrogen atoms and one oxygen atom. In the
above reaction, this requires that twice as many hydrogen molecules enter the reaction; we express this as
follows:

2H2 +O2→ 2H2O

This is now balanced because there are 4 hydrogen atoms and 2 oxygen atoms on each side of the reaction.

Example 1.6.1

Balance the following reaction for burning octane C8H18 in oxygen O2:

C8H18 +O2→ CO2 +H2O

where CO2 represents carbon dioxide. We must find positive integers x, y, z, and w such that

xC8H18 + yO2→ zCO2 +wH2O

Equating the number of carbon, hydrogen, and oxygen atoms on each side gives 8x = z, 18x = 2w

and 2y = 2z+w, respectively. These can be written as a homogeneous linear system

8x − z = 0
18x − 2w= 0

2y− 2z− w= 0

which can be solved by gaussian elimination. In larger systems this is necessary but, in such a
simple situation, it is easier to solve directly. Set w = t, so that x = 1

9 t, z = 8
9t, 2y = 16

9 t + t = 25
9 t.

But x, y, z, and w must be positive integers, so the smallest value of t that eliminates fractions is 18.
Hence, x = 2, y = 25, z = 16, and w = 18, and the balanced reaction is

2C8H18 +25O2→ 16CO2 +18H2O

The reader can verify that this is indeed balanced.

It is worth noting that this problem introduces a new element into the theory of linear equations: the
insistence that the solution must consist of positive integers.


